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Absh'acf In physics, fractal objects are basically finite. This means that their geomehical 
features must be corrected by natural cutaffs. In the important example of aggregates of small 
units. the scaling behaviours break down both for small length-scales (reflecting the typical size 
of the monomers) and for large length-scales (due to the finite extent of the aggrepate). These 
cut-off functions are either ignored in  the theoretical Studies, or they nre modelled by a simple 
exponential function. In this paper we show that this simple form is not the generic case and that 
some physical properties depend quantitatively on the precise form of the= cut-offs. Explicit 
analytical and numerical models. mainly connected to the cluster-cluster aggregation model, are 
srudied from this perspective. AU of them exhibit roughly the Same form of cutaff function. 
We discuss the sensitivity to these functions of some optical properdes of importance in light 
scattering experimenls 

1. Introduction 

Let us consider a fractal aggregate of N units. Each unit is assumed to have the same 
geomebical form and physical properties. For simplicity they may be imagined as balls of 
identical radius a.  The mass-correlations inside one such aggregate are representative of 
the scaleinvariant structure. When one knows the density p ( r ) ,  one simple way to study 
the morphology of such an object is the density-density correlation function defined by [l] 

Thereafter, the notation (. . .) indicates the average over a large number of aggregates of the 
same size. The main property of this correlation function is its power-law behaviour 

c(r) - rD-3 (2) 

for such values of the distance r lying between a and a typical radius of the aggregate, 
say R .  The exponent D is the fractal dimension of the cluster, and is characteristic of its 
mass distribution. Its value, in the scaling range of r ,  must be larger than 1 for a connected 
aggregate and smaller than the dimension of the space (here 3) for non-overlapping units. 
The Fourier transform of the density-density correlation function has a very simple form, 
since it separates the contribution of the units from the information on the aggregate [2]. 

0305-4470/95/M0297+20$19.50 0 1995 IOP Publishing Ltd 291 



298 R Botet ef al 

More precisely, if one defines the origin of the coordinates, r = 0, at the centre of mass, 
then 

The factor s(k) is the form-factor of one unit, which for a homogeneous ball of radius a is 
given by 

3 
k3a3 

s(k) = -(sin(ka) - ka cos(ka)) (4) 

Note, in partick&, that equation (3) implies some constraints on the correlation function; 
for example, C ( k )  must be real and non-negative. This gives a strong limitation on the 
functions which may represent such correlations. 

We shall see another correlation function, namely the distance distribution 131: 

where the sum is over all the pairs of different units. The vector TQ is the difference 
ri - rj, and 8 is the Dirac distribution. In other words, this function P(r) denotes the 
average number of pairs of units whose centres are separated by the distance T. Contrary to 
the density-density correlation function, there is no information about the internal structure 
of the units, but simply about the location of their centres. These two functions C ( r )  and 
P(r) are linked, as can be seen from their Fourier transforms [2]: 

From the point of view of the geometrical structure of the aggregate, the density-density 
correlation function and the distance distribution function contains the same information, 
but the latter can be more directly physically applicable, e.g. in light scattering phenomena. 

Finally, we shall make some general assumptions about the objects to be studied here. 
One is the statistical isotropy of the objects: that is to say, all the physical quantities which 
depend on the vector distance r will be assumed to have average values dependent on only 
the modulus of this vector, r .  In particular, 

P ( r ) d 3 r  = 47rr2P(r)dr (7) 

and similarly for its Fourier transform. For example, this means that we do not consider 
the case where anisotropic fractal aggregates are oriented in space because of some external 
field. 

Another general feature of fractals is self-similarity. Because of this property, no typical 
length can exist in the system except the radius of the monomers, which gives the unit of 
the lengths, and one global radius of the object, say its radius of gyration R,: 

All the other lengths defined by the system should be expressed in terms of these two 
quantities. We could also take other definitions of the typical radius of the aggregate (the 
maximum distance between the units, for example) but the radius of gyration has some 
advantages: it is easy to define, has small fluctuations around its average value, and occurs 
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quite naturally in many physical processes. Within this frame, one can write a general 
approximate form for the average distance distribution in terms of the reduced distances 

The cut-off function f m  governs the change in the distribution due to the finite extent of 
the aggregate. Note that we do not take into account the small-length cut-off (for distances 
smaller than 2a). This is equivalent to assuming that the radii of the monomers are much 
smaller than the typical radius of the aggregate. A complete description of the behaviour of 
the correlation functions near r = a should consider the fine structure of the units, which 
is not our aim in this paper. Hence, the function f m  is essentially equal to 1 when r (< R, 
to recover equation (2), and must vanish for r z 2(N - 1)a. The numerical coefficient A 
is expressed by the normalization of the average probability density as 

A = 4n xD-' f , , ( x )dx .  (10) im 
Because of the definition of the radius of gyration (8), we must have the following 

constraint on the moments of the function fm: 

J d m x ~ - ' ( X Z - 2 ) f c a ( x ) d i  = o  (11) 

which is equivalentto a normalization of the cut-off function. 

fco to satisfy the inequality 
Finally, since C ( k )  must be a positive function, the relation (6) constrains the function 

for any real value of the parameter a. As an application of this inequality, one can remark 
that a step function cannot represent one such cut-off, since (12) fails in this case. 

An obvious but important application of the general form of the distance distribution 
can be found by remarking that there is a proportion I / N  of pairs whose mutual distance is 
equal to 2a. This means that the integral of P(r)  over a ball of radius slightly larger than 
2a must be equal to N - 1, or. equivalently 

D 

N z A ' ( Z )  . 

An equation which gives the well known average relation between the number of particles 
of one cluster and its radius of gyration. 

2. General behaviour of the distance distribution function 

The Fourier transform of the distribution P ( T )  can be formally expanded as a series 
involving average radii: 

The positive quantities a, which appear in this expansion are defined explicitly as a 
combination of various averages of the distances of the centres of the units to the centre of 
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mass (here &,j denotes the Kronecker symbol): 

(15) 
= 1 and a1 = f. are indeed model-dependent. In particular, 

P(k) N e-lk'R:. (16) 
This general Guinier regime is valid as long as kRg << 1, but it decreases too sharply, 

in general. The following corrective term involves the calculation of ((rz)z)/(r2)2 which is 
yet dependent on the model or on the geometrical structure of the real aggregate. In term 
of the distance dishibution this regime, for the small values of k in reciprocal space should 
be related to the behaviour for large values of the distance r in real space, and since the 
inverse Fourier transform of a Gaussian function like (16) is still a Gaussian function, one 
could expect the cut-off function of P(r) to be of the same form. Unfortunately, the relation 
between the distance distribution function and its Fourier transform is not so simple, since 
it  is written as 

(17) 

The problem arises from the fact that integrals of the form: ksin(kr) diverge, and the 
behaviour of (17) at large r is then the consequence of the cancellation of the divergence of 
the integral of the Fourier transform P̂  at intermediate and large k. ' b o  simple examples 
clearly demonstrate this phenomenon when 7 takes positive values: 

But all these factors, except 
equation (15) allows one to find the behaviour of p(k) for small values of k: 

P(r )  = - dZr 1 - k  sin(kr)p(k)dk. 

In these examples, the corresponding functions p(k) behave similarly for small values of 
k, but decrease quite differently for larger values. The resulting distance distributions, even 
for large distances, are then completely different. 

We shall now focus on a particular type of fractal aggregate of particles, namely the 
cluster-cluster aggregation (CCA) models [4], which have been shown to be relevant in 
many areas of physics (colloids, aerosols and polymers, for example). The fundamental 
particularity of this sort of aggregation is that growth occurs by successive sticking of 
clusters of comparable sizes. This is quite different from growth where particles are 
added one after the other on a large cluster. This latter example leads to other classes 
of universality. 

Returning to the cluster-cluster aggregation models, a simple argument allows us to 
make one conjecture about the asymptotic form of the distance distribution for this example. 
Let us define the function Q p ( r )  as the proportion of pairs of particles (in a cluster of size 
N )  whose relative distance is larger than r .  During such a growth two clusters stick to 
form a larger cluster. We know that we may suppose that the two colliding clusters have 
exactly the same size N without changing any geometrical feature IS]. Then, the cluster 
resulting from the aggregation of these two clusters, has size 2N.  We now require the 
relation between the two functions &N(r)  and QN(r). The pairs of monomers further 
apart than r ,  in one given parent cluster of size N, can be found as the two pairs of points 
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( A .  C )  and ( C ,  E ) ,  where C is any point in the daughter cluster of size 2 N .  For large 
values of r ,  the two sides AC and C B  have lengths comparable to r ,  which is the length 
of the side A B .  Considering, for simplification, only the equilateral triangles A B C ,  we get 

which leads to a solution of the form exp(- f ( r ) / N )  for this function. Moreover, here N 
acts as the typical size of the cluster. Since it is a fractal there is no other length-scale than 
Rg, and all the distances must be expressed in the scaled form r / R 8 ,  or equivalently r D / N .  
The solution we have found for the function QN(r) is 

with some non-dimensional parameter a. This result can be written in terms of the function 
P ( r ) ,  since -47rr2P(r) is just the r-derivative of QN(r).  This leads to the approximation: 

which is exactly of the form of (9). To obtain this expression, we have done many 
crude approximations simply in order to account for the idea of hierarchical growth, but, 
nevertheless, this gives a precise asymptotic form which we shall try to verify later on 
some models of this sort. We do not claim here that this is the true distribution in all 
cases, but simply that this form is a good candidate amongst all imaginable functions in the 
case of the CCA models. Considering one term after the leading one, we shall write trial 
distance-distribution cut-off functions more generally as 

constant when x + 0 
Cbexp(-cxD) when x >> 1 . f w ( x )  - 

In the past, another form for fw has been proposed wherein the large-x behaviour was 
a simple exponentiab exp(-x/e) [6]. This is reminiscent of the Lorentzian form (18) of 
the Fourier transform. There were at least two reasons for this: first, this form often leads 
to tractable analytical calculations, which may be very useful. Moreover, this sort of cut-off 
is present in the correlation functions of systems exhibiting a phase transition [7], and in 
this case 5 appears as a correlation length. At the critical point, 6 behaves like the total 
length of the system, so that the problem of the correlation functions seems quite similar 
both for the fractal aggregates and for the thermodynamic systems at their critical point. 
However, there is an important difference: the Ornstein and Zemike derivation used to 
obtain this correlation function is based on the hypothesis that the thermodynamic state of 
the system is driven by a Landau-Ginzburg free energy, whereas for the fractal aggregates 
of particles one knows that the evolving system is always far from the equilibrium so that 
the very definition of some free energy is quite ambiguous for such a system. This makes 
the Ornstein-Zernike correlation function of doubtful use in our problem. 

3. Cut-off functions for some aggregation models 

3.1. The overlapping random walk 

This model is defined in the following way. A point jumps randomly in ordinary three- 
dimensional space. Each jump has length 2a and random space-orientation, and the set 
of N successive jumps corresponds to the set of the N centres of the particles of radius 
2a of the cluster. In this model, overlapping of units is allowed since two non-adjacent 
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jumping points can be, by chance, at a distance smaller than 24. Note, however, that this 
complication is known to be irrelevant for space-dimension larger than 2. 

This model can be solved exactly and the distance distribution is equal to 

1 sin(kr) 
P(r, N )  = 

N ( N - l ) n Z  1 kr 

It may be readily developed in a series of Hermite polynomials. The term of order 0 
gives the Guinier regime (16) and leads to the radius of gyration (13) with fractal dimension 
D = 2 and coefficient A' = 6. The term of order 1 gives the leading behaviour of the 
cut-off function fm [SI: 

when x + 0 
when x >> 1 I" x - ~  exp(-xz/4) f m b )  

Though this is not a CCA model, here we recover the form (23) of the cut-off function with 
the non-universal values of the parameters b = 3 and c = i .  

It is of some interest to note that the same sori of cut-off function has been observed in 
the particle-cluster diffusion-limited aggregation model [9]. In this case, the cluster grows 
around one seed by addition of randomly landing Brownian particles, so that the centre of 
mass of the whole aggregate is aIways close to this initial particle. An analytical mean-field 
derivation of the average density (the centre of mass being chosen as the centre of the 
coordinates) leads to a density function of the approximate form 

A l r  when r < R. 
b 

when r >> R, 
where A, B and C are constants. Replacing the convolution p * p in definition ( I )  leads 
to a Gaussian cut-off function of the form (23). but where the exponent D appearing in the 
exponential function is replaced by 2 (while the fractal dimension is D 2 2.5). 

3.2. The reaction-limited CCA model 

Let us now discuss the CCA models. In these cases the clusters diffuse freely, according to 
some diffusion law, and they stick when they collide. If the sticking is immediate (at the 
first collision), this is either the Brownian cluster-cluster aggregation when the diffusion 
can be simulated by random walks, or the ballistic CCA model if the diffusive trajectories 
are random lines. They correspond to aggregation in a dense and rarefied fluid medium, 
respectively, and will be investigated in the next section. Another such model is called 
the reaction-limited cluster-cluster aggregation [lo]. If is defined by a very low sticking 
probability during a collision. One can show that, under this condition, the precise form of 
the diffusion is unimportant. The simulations of this model are as follows: at the beginning, 
one starts with 2" isolated units which are all considered as clusters of one particle. At a 
later stage of the simulation, one has obtained a set of larger clusters in the following way: 
one randomly chooses two clusters of the same size and one particle in each of them. These 
two particles are placed in contact with one another, the rest of the clusters remaining rigid. 
Sticking does not occur if some overlapping of other particles is found. If, on the contrary, 
there is no overlapping, then sticking is effective and thus there is formation of one cluster 
twice the size. This scheme is continued until there is just one final cluster of size 2". This 



Sensitiviry of optical properties of fractals 303 

process is important since it is believed to hold for most of the cluster-cluster aggregation 
phenomenon where some reversibility occurs. This can be either a small probability of 
(irreversible) sticking or a reversible sticking. The fractal dimension is found to be equal 
to D = 2 in accordance with the exact result of the at-equilibrium lattice animals model 
which is believed to be representative of this universality class. More precisely, one finds 
for the reaction-limited cluster-cluster aggregation model: 

2 

N N 3.3 (2) 
for N < lo4 (see figure l), which is consistent with (13). The following term in the 
expansion (27) is a constant (independent of R,) whose order of magnitude is 0.7. The 
distance distribution function, corrected by this fractal behaviour, is plotted in figure 2 for 
several sizes, for N = 256-4096. The data are well reproduced by one cut-off function of 

- 1 '  ' ' ' ' ' ' ' ' ' ' 
INN) 

0 2 4 6 8 10 

0 I 2 3 4 5 
rlR , 

-10' " " " " ' 

F i g m  1. Double.iogarithmic piat of the 
average radius of gyration versus Ule size of 
lhe aggregates, for the three-dimensional off- 
lattice reaction-limited cluster-cluster aggregation 
model. Each point corresponds to an average over 
I000 independent simulations. The stnight line 
corresponds to (27). 

Figure 2. Logarithm of the scaled distance distri- 
bution function versus the reduced distances. The 
crases are the data for N = 4096,2048, 1024,512 
and 256 units. The scaling (9) is clear. The C U N ~  
is a best fit (28). 
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the form (23): 

f E o ( x )  - e-"/' (28) 
with the parameters b = 0 and c = 4. Note that this function exactly satisfies constraint ( 1  1). 
We see here that the values of these coefficients are model-dependent, since the random- 
walk model described above has probably the same value of fractal dimension, but very 
different values of parameters b and c. 

3.3. The Brownian c a  model 

This model 11 1,121 for rapid aggregation of coIloids leads to a fractal dimension of about 
1.74 for a number of monomers smaller than lo4. The relation (13) in this case is written 
as 

1.74 

N = 4.6 (5) 
as can be seen in figure 3. The conjectured form of the cut-off function can be checked 
by plotting r3-DP(r)  versus YS for various values of the exponent s. This is done on 
figure 4 for s = 1, 1.74 and 2. The best linear behaviour is found for s = D in agreement 
with the form (23). The largedistance cut-off function of the distance distribution can be 
approximated well by a law of the form 

This fit is compared in figure 5 with the numerical curves for N = 2564096. If one 
tmsts this cut-off, it verifies (23) npith the parameters b = 1 and c = 1. The coeecient 0.3 
is given by the constraint (1 1). The uncertainty on the value of b is quite important and 
here its magnitude should be considered as purely indicative. 

3.4. The ballistic CCA model 

This is one model for coagulation of aerosols in a rarefied medium. The diffusion of the 
clusters is modelled by random straight lines in space [13]. The relation between the size 

Figure 3. The same as figure I ,  for the three. ' dimensional off-lmlce Brownivl cluster-clusler 
aggregation model. 
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3o distances. The plot is linear n w  the value s = D -10’ 
0 IO 20 

-10 
0 I 2 3 4 5 

rlRs 

and the radius of gyration is 
I .sQ 

N N 3.9 (2) 

Figure 4. L o p i t h  of the scaled distance 
distribution versus the sth vower of the reduced 

(here D 2 1.74), which is the result given by the 
argument leading to (22). 

Figure 5. The same 3s figure 2. for the three 
dimensional off-lattice Brownian cluater-cluster 
aggregation model. 

for cluster sizes smaller than lo4. This is shown in figure 6. The cut-off function has been 
studied in the same way as for the reaction-limited and the Brownian CCA model. It can be 
seen in figure 7 and is approximated well by 

The parameters of this law are then found to be b = 2 and c = i. We can note that all the 
CCA models studied in the present paper lead to the same value of the parameter c, which 
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M R . )  

I -0.720 + 0.526 In(N) 2 

Figure 6. The same as figure I ,  for the thee- 
dimensional off-lzutict ballistic cluster-cluster ag. 
gregation model. 

] 

. I O J " " " ' " '  FIN 7. The same as figure 2. for the three. 
dimensional off-lattice ballistic cluster-cluster n g  
gregation model, 

0 1 2 3 4 
rlR 

is known with rather good precision (of order 0.03, here) since this is the leading term of 
fm. The reason for such a coincidence is unknown. 

3.5. The compact and linear models 

If one fills up the interior of a sphere of radius R with small units of radius a according to 
the face-centred cubic or the hexagonal closepacked rule, one has 

since the radius of gyration of such a sphere is equal to m R .  The Fourier transform 
of the distance distribution function is approximately equal to the square of the form-factor 
(4) for one homogeneous ball: s2(k). Then taking the inverse Fourier transform of this 
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quantity leads to the exact distibution 

for r < 2 R .  Of course this function, which counts the distances between units inside one 
given cluster, must vanish exactly in the case where this distance is larger than 2 R .  The 
above function is in the approximate form (9) with D = 3 and a cut-off function 

3 A x 3  when x c 2 f i  

when x z 2 8  
f d x )  = (35)  

which is no longer under the form (23)  expected for CCA fractal objects. It shows some 
similarities with the h e a r  model, where particles are placed linearly, one close to the other. 
In this case, the radius of gyration is such that 

N Z - 1  (2) =12 
and so (13) holds with D = 1 and A’ = a. The cut-off function is just equal to 

when x 

when x > f i .  

X 

f&) = (37) 

The latter two examples show, in complement, that the distance dishibution cut-off 
function is not of a universal form in general, even if such a form can exist for some classes 
of models (e.g. CCA). It is then quite important to study the influence of these non-scaling 
large-distance behaviours to decide if they change the information which can be extracted 
from the experimental results. We know that these functions are completely avoided in 
many cases, and approximated by a simple but probably non-standard form in other cases. 
Hence, we wiU continue this work by discussing the influence of the cut-off functions on 
some physical quantities direcdy related to light scattering by these fractal objects. 

4. Scattering coefficients 

We are now interested in physical quantities involving long-range interactions between the 
units of a same aggregate. A typical example is radiation-scattering experiments. 

4. I. The mean-jeld dipolar approximation 

We suppose that light of wavelength A is scattered by one fractal cluster of N homogeneous 
spherical units of radius a ,  much smaller than A. In this case the electromagnetic field inside 
each unit is uniform, and can be described by dipolar theory [14]: each particle behaves 
like a small dipole, and the magnitude of its moment is such that 

(38) 

where the vector EioE denotes the local elechic field, k is the magnitude of the wavevector 
(= 2rr/A), and p is a function of the p-wave phase shift: 

p = 4x€0,qpF EI, 
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Its modulus is smaller than 1. The parameter n is the complex refractive index of the units. 
Each dipole radiates in space an electric field given by 

3i )] (40) 
i 1  

kr k2r2 kr kZr2 

with U being the unit vector in the direction of the distance vector T. 
In a multiple-scattering approach to this problem, each unit reacts to the incident field 

(say: Einc = E, and to all the other dipolar fields emitted by the other units. One 
finds then the self-consistent equations [15] for the local fields E, defined at the centre of 
the small j th particle: 

(41) 

where we have introduced the relative distance r,f = rj -TI. 

to electric fields, by 
Following Berry and Percival [8], we now introduce the vectorial coefficients dj,  similar 

Ej = d j  e ik ,mr l  , (42) 

These coefficients are the solutions of an equation very similar to (41). Lastly, we make 
the mean-field approximation of the dj-dis@ibution: 

dj = d .  (43) 

That is to say: all the units of a same cluster have identical dipolar moments. Because 
of the linearity of (41), d must be colinear to the incident field Eo. Defining the scalar 
quantity d by d = dE,. equation (41) leads to 

(44) 

This sum, involving only relative distances between monomers of the same cluster, is 
different over all the units from one given unit (labelled j ) .  When averaging over j ,  then 
over a set of independent clusters of same size N, one gets the more tractable formula 

(45) 

1 i 2  
d 
- = 1 - 6 ~ p ( N  - 1) 

+-(I cos(kr) + g 3i - 3 G ) ] c r z ~ ) b  eiXr 
k2r2 

where P ( r )  is the distance distribution function, as defined in the first section. The Foregoing 
integral is always convergent for 0 z 1, since P(r )  = 0 when r > 2 a ( N  - l), and the 
expression in the brackets tends to a constant (= E) when kr is close to 0. 

Once the mean-field value of the dipolar moments are known, all the optical quantities 
(like the scattering (us), extinction (0,) and absorption (U,) cross sections, the asymmetry 
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parameter (g), . . .) can readily be calculated [16]: 

with the dipolar field-vector f given by 

More precisely, this leads to the explicit formulae 

1 
- = 1 - p(Il(X) + iIz(X)) n X = k R ,  

where the geometric functions I , ,  I2 and I ,  are given by the following integrals: 

xuD-' f&) du (51) 

which are none other than Fourier transforms of some complicated functions. Let us now 
discuss in detail the dependence of these integrals on parameter X, and on cut-off function 
fm. To simplify the following results, we shall use the values of the scattering coefficients 
for one unit, namely: 
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4.2. Small-X behaviour 

To study the small-X features of these optical quantities, or even for numerical computation, 
it is often more convenient to rewrite the integrals (49)-(5 1) in terms of the following regular 
series: 

fw(u)du (55) 

which simply require knowledge of the values of the fw-moments. Moreover, the numerical 
calculation of the intermediate quantities I ! ,  12 and 13 are often much easier using the above 
series rather than the definitions (49)-(51). 

We can remark, in particular, that the leading term of Zl (X) depends on the form of 
the cut-off function, and that this is recovered in the optical cross sections (but not for g, 
which depends only on 12 and 1,) 

u,(N) N NZu,(l) 1 + 2Re{p)cu- 

with the numerical parameter a-which depends on the cut-off-given by 

This small-X behaviour holds in the limit R, <<A, which is a very common case. 

4.3. Large-X behaviour 

When we do not take into account the cut-off function &(U) (i.e. when i t  is made equal 
to l), the integrals (50) and (51) are divergent. However, since the main part of the value of 
these integrals is due to the values of the integrand between 0 and a value of U of order I ,  
one can easily find the following asymptotics: 

N 
/I(X) 4 3 (58) 



Sensitiviry of optical properties of fractals 311 

with 

JI = - 2D-'A 6rr lw(F( 1 - - 2o U2 + - ") U4 + 47u( - 1 - -  : t ) ) u D - !  du 

where J I  is finite for all values of the fractal dimension between 1 and 3. Moreover, the 
value of A J ,  is exactly equal to 3n2/2 when D = 2. 

I f D < 2  

J 2 = k L m [ 3  A U4 +~-(cosu U3 - sinu/u UD-' dU . 
(cos U - sin ~ / u ) ~  sin U 

I f D = 2  
3 n  ln(X) 
A Xz ' 

I z ( X )  N - N -  

N 
I 3 ( X )  J3- 

X D  
with 

(cos U - sin U / U ) ~  

J 3 = $ 1 " [  U2 

I f D = 2  
3n In(X) 

IZ(X) N - N -  
A X 2  ' 

An important feature must be remarked here: we see a different behaviour for the fractal 
dimension D smaller or larger than 2. This has been noted by Berry and Percival [SI with 
the exponential cut-off, but, as expected, it is quite general. More precisely, one finds when 
a <<A << R, three behaviours depending on the value of D .  If 1 c D < 2, 

A'Jz 
u,(N) N NuS(I)- 
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If D = 2. the following formulae hold: 

3zA' ln(4k2a2N/A') 

3zA' ln(4k2a2N/A') 
k2az 

kZa2 

u,(N) N N~e(1)- 
SA 

8A 
uS(N) NU$(])- 

8Ak2a2 
3xA' ln(4k2a2N/A') 

g-I- 

and, lastly, if D > 2, one has 

Note the very simple behaviour of the absorption cross section, which is simply, at first 
approximation, the sum of the absorption cross sections of the N individual units, even for 
multiple scatteringi. 

Having given the general small-X and large-X behaviours, we shall now take two 
examples among the possible cut-off functions, and study the magnitudes of the optical 
cross sections in the whole range of values of X. Let us take the reaction-limited CCA 
model (D = 2) successively with the following trial cut-offs: 

(73) 4 / 2  Exercise 1: fW(x) = e  

Exercise 2 /&) =e-'&. (74) 

The f i s t  example is just the solution (28) found numerically for this model, It should 
yield the correct answer. The second one is a simple exponential function which also 
satisfies the constraint (11). 

4.4. The correct cut-off (exercise 1) 

In this case the normalization coefficient A is equal to 4z,  by definition (IO), the coefficient 
A' is 3.3 by (27), and the moments of the cut-off function are given by: 

This result for the abbaorptlon cross section, and the behaviour of a, in the case of the exponential cut-off with 
the choice A' = ( Z f i ) D ,  h a  been given previously by Berry and Percival [8]. 
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With these simple results, the expressions (533-(55) can be written simply as 

(76) 
412 + 81 + 11 (-2x9' 

I !  

m 1 2 + 3 1 + 4  I !  
(-8X')' I d X )  = 3(N - I )  (1 + 2)(1+ 3) (21 + 2)! I=O 

(77) 

(-8x2)' (78) 
(1 + ] ) ( I 2  +71+ 16) (I + l)! 
(1 + 3)(/ + 4)(/ + 5) (21 + 4)! 13(x) = 24(N - 

I=O 

which are uniformly convergent series for all values of the parameter X. 

4.5. The exponential cut-off (exercise 2) 

When replacing the function (74) in the integrals (49)451), and knowing A = 4 ~ / 3  and 
A' = 3.3, one finds the rather simple formulae 

9 N - 1  
I,(X) = -- 

4 x2 
(79) 

(80) 

(81) 
8 x2 

4.6. Comparing these direrent cut-offs 

The small-X behaviours in the two preceding cases show that the leading terms of I,/(N- 1) 
are slightly different in the two cases under consideration-l.378/X for the first cut-off (73), 
and 1.905/X for (74)-but their orders of magnitude are comparable. For 12 and 13, the 
leading terms are similar. Hence, we do not expect strong differences in the optical quantities 
when the wavelength is much larger than the radius of gyration of the aggregate. However, 
in principle, the above derivations should be valid, in this mean-field dipolar approximation, 
for ka << 1, which is a much weaker condition. With n = 1.5 and h/a = 25 chosen 
as a standard and quite ordinary set of parameters, the reduced scattering cross sections 
(us(N)/(ra2)) are plotted in figure S for these two cut-off functions, as a function of the 
size, and the asymmetry parameter g in figure 9 as a function of the logarithm of the size 
of the clusters. Since n is real, the absorption cross section U, must vanish, and so the 
extinction and scattering cross sections must coincide, as we can easily verify in the above 
formulae (since /pI2 = Im{p}, in this case). 

Since, kR, 'v 0.2767fi, the small-X behaviour coincides here with the range N << 13, 
and effectively, the two sets of values are very similar in this case. Moreover, they are 
well represented by the small-X formulae (56). However, for this numerical example, we 
see that the results for the two cut-off functions are rather different as soon as the size N 
is no longer small. Let us look more closely at the N = 128 results, for example. The 
correct cut-off leads to a scattering cross section equal to 0.6314, while the exponential 
cut-off gives a value some 50% larger (us = 1.0488). The large-X behaviour is beyond the 
plotted range of X. Notice, however, that the formulae (65) yield a ratio between the two 
scattering sections approaching the value 3 when X becomes infinite. 
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M N )  

Ftyre 8. Plot of the reduced sanering cross section 
versus the size of Ihe aggregates. in the mea-field 
dipolar theory of the multiple light-scattering. The 
paramem are n = 1.5. A = 2Sa. and the model is h e  
reaction-limited cluster-cluster aggregation. Full circles 
are the results for the c o m l  c u t 4  function shown 
in figure 2. Triangles are the daia for the exponential 
cut+ff function (74). The full curve is the small-X 
behaviour, as approximated by (56). 

Figure 9. Plot of the asymmetry pmmcter versus the 
logarithm of the size of the aggregates. Same optical 
p m e t e r s  and same nowions as for figure 8. 

The same sort of remarks can be made for the asymmetry parameter. The values are 
0.5964 and 0.4449, respectively, for N = 128, i.e. a relative difference of some 30%. 
When one knows the importance of the influence of the magnitude of these quantities on 
some optical properties (e.g. the albedo of planetary atmospheres), one concludes that it is 
quite important to be careful about cut-off functions in order to obtain reasonable values 
for optical observahles. In particular, chapter 3 provides a list of correct approximations 
of the large-scale cut-off functions for the Brownian, ballistic and chemical cluster-cluster 
aggregation models, to be used in the calculation of some optical quantities. 

5. Conclusion 

If one is only interested in the angular distribution of the intensity of the light scattered 
by such fluffy aggregates, one has simply to determine the range in the moment transfer 
(q = 4n sin(8/2)/h) which corresponds to the scaling. 

In this case, it is not important to take the cut-off functions into account, since one 
only deals only with the self-similar part of the aggregate. On the contrary, many physical 
applications need precise values of the optical cross sections, and not just some scaling 
behaviours. These quantities are directly related to some average of the scattered or absorbed 
intensity, this average being performed over the scaling but also the non-scaling range of 
the parameters. Let us take the scattering cross section, for example. It is the average of 
the scattered intensity of the light over all the angles 8. In a wide range of values of 0, the 
system looks like a perfect self-similar structure, since the inverse of q is much larger than 
a and much smaller than R,. However, if the scattering angle is too small, the system is 
no longer in the self-similar regime. Nevertheless this still has to be counted in the average 
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for the calculation of this cross section. The present work has been devoted to answering 
the question of whether this non-scaling part is important or not. 

We then investigated the influence of these cut-offs between the scaling and the non- 
scaling regimes in the mean-field dipolar approximation for scattering. The conclusion is 
that, generally, the optical cross sections depend quantitively on the cut-off functions. This 
effect is particularly important when the wavelength h is smaller than, or of the same order 
of magnitude of, R, (i.e. large values of X ) .  In this case, the presence of the factor A in 
(59), (65) and (69) can completely change the order of magnitude of the optical quantities. 
However, even in less extreme cases, for example if the sue parameter X is not very large, 
the effect of the cut-off is still evident (see the discussion of the point N = 128 of figures 8 
and 9, which corresponds to X = 3.1). In this case, the form of the cut-off in the distance 
distribution functions plays a role, and a correct form must be taken in the calculations to 
get correct numerical values of the cross sections. Another general feature found here is 
that the larger the size of the aggregate, the more important is the sensitivity to the cut-offs. 
This dependence can be qualitatively explained using the following argument: the optical 
cross sections are derived here as Fourier transforms of some functions of the distance, but 
if the distances are allowed to go to infinity, these integrals diverge. It is then not surprising 
that the cut-offs in the distances have a great influence on the numerical value of these 
Fourier transforms, and hence on the optical quantities. The effect is more important for 
large clusters because the distances to be taken into account are large, and the divergence 
of the integrals takes place for infinite distances. 

In this paper, we also give explicitly the analytical expressions for the scattering, 
extinction, absorption cross sections, as well as the asymmetry parameter, in terms of 
the cut-off function. These cut-off functions have been computed for the most common 
cluster-cluster aggregation models, which are important in the physics of aerosols, colloids 
and polymers, and they have never been found equal to a simple exponential cut, as had been 
proposed previously. We can now use the formulae (2.Q (30), (32), (48), and (53)-(55) as 
recipes to compute reasonable values of the optical cross sections of fractal aggregates in a 
number of cases. 
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