IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Sensitivity of some optical properties of fractals to the cut-off functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 28 297
(http://iopscience.iop.org/0305-4470/28/2/008)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 01:32

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

I. Phys. A: Math. Gen. 28 (1995) 297-316. Printed in the UK

Sensitivity of some optical properties of fractals to the
cut-off functions

Robert Botet}, Pascal Rannouf and Michel Cabanet

t Laboratoire de Physique des Solides, CNRS LAZ, Batiment 510, Université Paris-Sud
Centre d’Orsay, F-91405 Orsay, France

1 Service d’ Aéronomie, Tour I3, Bofte 102, Université de Paris 6, 4 Place Jussieu, 75252, Paris
Cedex 05, France

Received 25 July 1994, in final form 31 October 1994

Abstract. In physics, fractal objects are basicaily finite. This means that their geometrical
features must be corrected by natural cut-offs. In the important example of aggregates of smalt
units, the scaling behaviours break down both for smalf length-scales (reflecting the typical size
of the monomers) and for large length-scales {due to the finite extent of the aggregate), These
cut-off functions are either ignored in the theoretical studies, or they are modelled by a simple
exponential function. In this paper we show that this simple form is not the generic case and that
some physical properties depend quantitatively on the precise form of these cut-offs. Explicit
analytical and nnmerical models, mainly connected to the cluster—cluster aggregation model, are
studied from this perspective. All of them exhibit roughly the same form of cut-off function.
We discuss the sensitivity to these functions of some optical properties of importance in light
scattering experiments.

1. Introduction

Let us consider a fractal aggregate of N units. Each unit is assumed to have the same
geometrical form and physical properties. For simplicity they may be imagined as balls of
identical radius a. The mass-correlations inside one such aggregate are representative of
the scale-invariant structure, When one knows the density o(r), one simple way to study
the morphology of such an object is the density—density correlation function defined by [1]

[ e@p( +rydr} .
(f prr@r))

Thereafter, the notation {- - -} indicates the average over a large number of aggregates of the
same size. The main property of this correlation function is its power-law behaviour

C(r) ~rP-3 (2)

for such values of the distance r lying between a and a typical radius of the aggregate,
say R. The exponent D is the fractal dimension of the cluster, and is characteristic of its
mass distribution. Its value, in the scaling range of r, must be larger than 1 for a connected
aggregate and smaller than the dimension of the space (here 3) for non-overlapping units.
The Fourier transform of the density—density correlation function has a very simple form,
since it separates the contribution of the units from the information on the aggregate [2].
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More precisely, if one defines the origin of the coordinates, © = 0, at the centre of mass,
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The factor s(%) is the form-factor of one unit, which for a homogeneous bail of radius g is
given by

s(k) = ———(sin(ka) - ka cos(ka)). 4

k33

Note, in particular, that equation (3) implies some constraints on the correlation function;
for example, C(k) must be real and non-negative. This gives a strong limitation on the
functions which may represent such correlations.

We shall see another correlation function, namely the distance distribution [3]:

P(r) = < T ;M T )) (5)

where the sum is over all the pairs of different units. The vector r;; is the difference
r — 1y, and § js the Dirac distribution. In other words, this function P{r} denotes the
average number of pairs of units whose centres are separated by the distance r. Contrary to
the density—density correlation function, there is no information about the internal structure
of the units, but simply about the location of their centres. These two functions C(r) and
P(r) are linked, as can be seen from their Fourier transforms [2]:

C(k) = s(k) (% + (1 - %) ’P‘(k)) . (6

From the point of view of the geometrical structure of the aggregate, the density—density
correlation function and the distance distribution function contains the same information,
but the fatter can be more directly physically applicable, e.g. in light scattering phenomena,

Finally, we shall make some general assumptions about the objects to be studied here.
One is the statistical isotropy of the objects: that is to say, all the physical quantities which
depend on the vector distance = will be assumed to have average values dependent on only
the modulus of this vector, r. In particular,

P(ryd’r = 4nr?P(r)dr )

and similarly for its Fourier transform. For example, this means that we do not consider
the case where anisotropic fractal aggregates are oriented in space because of some external
field.

Another general feature of fractals is self-similarity. Because of this property, no typical
length can exist in the system except the radius of the monomers, which gives the unit of
the lengths, and one giobal radius of the object, say its radius of gyration Ry:

i
2 __ .2 2
R ={r)= 2N(N~1)§r ®
All the other lengths defined by the system should be expressed in terms of these two
quantities. We could also take other definitions of the typical radius of the aggregate (the
maximum distance between the units, for example) but the radius of gyration has some
advantages: it is easy to define, has small fluctuations around its average value, and cccurs
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quite naturally in many physical processes. Within this frame, one can write a general
approximate form for the average distance distribution in terms of the reduced distances

1 r\?? r
P(r} >~ = (—) Jeo (—) . (9
ARE R, R,

The cut-off function fo, governs the change in the distribution due to the finite extent of
the aggregate. Note that we do not take into account the small-length cut-off (for distances
smaller than 2a). This is equivalent to assuming that the radii of the monomers are much
smaller than the typical radius of the aggregate. A complete description of the behaviour of
the correlation functions near r = g should consider the fine structure of the units, which
is not our aim in this paper. Hence, the function feo i$ essentially equal to | when r € R,
to recover equation (2), and must vanish for r > 2(¥ — 1)a. The numerical coefficient A
is expressed by the normalization of the average probability density as

A= 41rf°°xb'1fco(x)dx. (10)
0

Because of the definition of the radius of gyration (8), we must have the following
constraint on the moments of the function fi:

fme”(xz—Z)fco(x)dx =0 (11)
0

which is equivalent to a normalization of the cut-off function.
Finally, since C(k) must be a positive function, the relation (6) constrains the function

Jeo to satisfy the inequality

fﬂ £ s"‘("””fm( ydx > (12)

for any real value of the parameter «w. As an application of this inequality, one can remark
that a step function cannot represent one such cut-off, since (12) fails in this case.

An obvious but important application of the general form of the distance distribution
can be found by remarking that there is a proportion 1/N of pairs whose mutual distance is
equal to 2a. This means that the integral of P(r) over a ball of radius slightly larger than
2a must be equal to N — 1, or, equivalently

o
No~A (&) . (13)
2a

An equation which gives the well known average relation between the number of particles
of one cluster and its radius of gyration.

2. General behaviour of the distance distribution function

The Fourier transform of the distribution P(r) can be formally expanded as a series
involving average radit:

Pk) = (N(N )gcos(k r,,)) n;o(—l)"'am(kRg)z’". (14)

The positive quantities a, which appear in this expansion are defined explicitly as a
combination of various averages of the distances of the centres of the units to the centre of
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mass (here §; ; denotes the Kronecker symbol):

o = (2mi+1)!l§]1+a [Z2l+1( )( "t )}%ﬂ
(13)

Baut all these factors, exceptap =1 and gy = 3, are mdced model-dependent. In particular,
equation (15) allows one to find the behaviour of P(k) for small values of k:

Py e R (16)

This general Guinier regime is valid as long as kR, <« I, but it decreases too sharply,
in general. The following comrective term involves the calculation of ((»2)2}/(r?)2 which is
yet dependent on the model or on the geometrical structure of the real aggregate, In terms
of the distance distribution this regime, for the small values of £ in reciprocal space should
be related to the behaviour for large values of the distance r in real space, and since the
inverse Fourier ransform of a Gaussian function like (16) is still a Gaussian function, one
could expect the cut-off function of P (r) to be of the same form. Unfortunately, the relation
between the distance distribution function and its Fourier transform is not so simple, since
it is written as

P(r)=

(17)

The problem arises from the fact that integrals of the form: ksin(kr) diverge, and the
behaviour of (17) at large r is then the consequence of the cancellation of the divergence of
the integral of the Fourier transform P at intermediate and large k. Two simple examples
clearly demonstrate this phenomenon when 7 takes positive values:

1 e I i

- 4 dk = —-rf«

22y fu ksm(kr)l + a?k? k 4ol € (18)
Y R g ) P

7 ), ksin{kr)e dk = T e . (19)

In these examples, the corresponding functions F(k) behave similarly for small values of
k, but decrease quite differently for larger values. The resulting distance distributions, even
for large distances, are then completely different.

We shall now focus on a particular type of fractal aggregate of particles, namely the
cluster—cluster aggregation (CCA) models [4], which have been shown to be relevant in
many areas of physics (colloids, aerosols and polymers, for example), The fundamental
particularity of this sort of aggregation is that growth occurs by successive sticking of
clusters of comparable sizes. This is quite different from growth where particles are
added one after the other on a large cluster. This latter example leads to other classes
of universality.

Returning to the cluster—cluster aggregation models, a simple argument allows us to
make one conjecture about the asymptotic form of the distance distribution for this example.
Let us define the function Qn(r) as the proportion of pairs of particles (in a cluster of size
N) whose relative distance is larger than r. During such a growth two clusters stick to
form a larger cluster. We know that we may suppose that the two colliding clusters have
exactly the same size N without changing any geometrical feature [5]. Then, the cluster
resulting from the aggregation of these two clusters, has size 2N. We now require the
relation between the two functions Qon(r) and @n(r). The pairs of monomers further
apart than r, in one given parent cluster of size N, can be found as the two pairs of points



Sensitivity of optical properties of fractals 301

{A.C) and (C, B), where C is any point in the daughter cluster of size 2N. For large
values of r, the two sides AC and C'B have lengths comparable to r, which is the length
of the side AB. Considering, for simplification, only the equilateral triangles ABC, we get

Qn(r) ~ Q3y(r) (20$)

which leads to a solution of the form exp(— f(r}/N) for this function. Moreover, here N
acts as the typical size of the cluster. Since it is a fractal there is no other length-scale than
R;, and all the distances must be expressed in the scaled form r/R,, or equivalently r2/N.
The solution we have found for the function Q () is

Oy (ry ~ e’V @21y

with some non-dimensional parameter or. This result can be written in terms of the function
P(r), since —4wr?P(r) is just the r-derivative of Oy (r). This leads to the approximation:

rD-3 o
P(r) e —-ﬁ--e"’" N (22)

which is exactly of the form of (9). To obtain this expression, we have done many
crude approximations simply in order to account for the idea of hierarchical growth, but,
nevertheless, this gives a precise asymptotic form which we shall t&ry to verify later on
some models of this sort. We do not claim here that this is the true distribution in ail
cases, but simply that this form is a good candidate amongst afl imaginable functions in the
case of the CCA models. Considering one term after the leading one, we shall write trial
distance—distribution cut-off functions more generally as

constant when x -0

23
x 7P exp(—cx?) when x> 1. @)

Jeolx) ~ {
In the past, another form for f., has been proposed wherein the large-x behaviour was
a simple exponential: exp(—x/£&) [6]. This is reminiscent of the Lorentzian form (18) of
the Fourier transforin. There were at least two reasons for this: first, this form often leads
to tractable analytical calculations, which may be very useful. Moreover, this sort of cut-off
is present in the correlation functions of systems exhibiting a phase transition [7], and in
this case & appears as a correlation length. At the critical point, £ behaves like the total
length of the system, so that the problem of the correlation functions seems quite similar
both for the fractal aggregates and for the thermodynamic systems at their critical point.
However, there is an important difference: the Ornstein and Zernike derivation used to
obtain this correlation function is based on the hypothesis that the thermodynamic state of
the system is driven by a Landau—Ginzburg free energy, whereas for the fractal aggregates
of particles one knows that the evolving system is always far from the equilibrium so that
the very definition of some free energy is quite ambiguous for such a system. This makes
the Ornstein—Zernike correlation function of doubtful use in our problem.

3. Cut-off functions for some aggregation models

3.1. The overlapping random walk

This model is defined in the following way. A point jumps randomly in ordinary three-
dimensional space. Each jump has length 22 and random space-orientation, and the set
of N successive jumps corresponds to the set of the N centres of the particles of radius
2a of the cluster. In this model, overlapping of units is allowed since two non-adjacent
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jumping points can be, by chance, at a distance smaller than 2g, Note, however, that this
complication is known to be irrelevant for space-dimension larger than 2.
This model can be solved exactly and the distance distribution is equal to

1 f°° sin(kr) S5
NN =—-Dr2 fy  kr (l_sin@a))z

2ka
. N .
N [ ( sin(2ka) ) _ pSin (2ka)

Plr, Ny =

2ka 2ka

It may be readily developed in a series of Hermite polynomials. The term of order 0
gives the Guinier regime (16) and leads to the radius of gyration (13) with fractal dimension
D = 2 and coefiicient A’ = 6. The term of order 1 gives the leading behaviour of the
cut-off function fo [8]:

+N—l]k2dk. (24)

when x—0

4
Seolx) ~ [ (25)

172 exp(—x?/4) when x> 1.
Though this is not a CCA model, here we recover the form (23} of the cut-off function with
the non-universal values of the parameters b =3 and ¢ = %.

It is of some interest to note that the same sort of cut-off function has been observed in
the particle-cluster diffusion-limited aggregation model [9]. In this case, the cluster grows
around one seed by addition of randomly landing Brownian particles, so that the centre of
mass of the whole aggregate is always close to this initial particle. An analytical mean-field
derivation of the average density (the centre of mass being chosen as the centre of the
coordinates) leads to a density function of the approximate form

y Ajr when r < R,
plry~
Be~CtiR) when r>» R,

where A, B and C are constants. Replacing the convolution p % p in definition (1) leads
to a Gaussian cut-off function of the form (23), but where the exponent D appearing in the
exponential function is replaced by 2 (while the fractal dimension is D ~ 2.5).

(26)

3.2, The reaction-limited CCA model

Let us now discuss the CCA models. In these cases the clusters diffuse freely, according to
some diffusion law, and they stick when they collide. If the sticking is immediate (at the
first collision), this is either the Brownian cluster—cluster aggregation when the diffusion
can be simulated by random walks, or the ballistic CCA model if the diffusive trajectories
are random lines. They correspond to aggregation in a dense and rarefied fluid medium,
respectively, and will be investigated in the next section. Another such model is called
the reaction-limited cluster—cluster aggregation {10). 1t is defined by a very low sticking
probability during a collision. One can show that, under this condition, the precise form of
the diffusion is unimportant. The simulations of this model are as follows: at the beginning,
ote starts with 2" isolated units which are all considered as clusters of one particle. At g
later stage of the simulation, one has obtained a set of larger clusters in the following way:
one randomly chooses two clusters of the same size and one particle in each of them. These
two particles are placed in contact with one another, the rest of the clusters remaining rigid.
Sticking does not occur if some overlapping of other particles is found. If, on the contrary,
there is no overlapping, then sticking is effective and thus there is formation of one cluster
twice the size. This scheme is continued until there is just one final cluster of size 2", This
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process is important since it is believed to hold for most of the cluster—cluster aggregation
phenomenon where some reversibility occurs. This can be either a small probability of
(irreversible) sticking or a reversible sticking. The fractal dimension is found fo be equal
to D = 2 in accordance with the exact result of the at-equilibrium lattice animals model
which is believed to be representative of this universality class. More precisely, one finds
for the reaction-limited cluster—cluster aggregation model:

~ R\’
N=>~>33 (E) 27

for N < 10* (see figure 1), which is consistent with (13). The following term in the
expansion (27) is a constant (independent of R;) whose order of magnitude is 0.7. The
distance distribution function, corrected by this fractal behaviour, is plotted in figure 2 for
several sizes, for N = 256-4096. The data are well reproduced by one cut-off function of

In(R )
4

-0.6+0.5 In(N)
3 =

Figure 1. Donble-logarithmic plot of the
average radius of gyration versus the size of
R.C.CA. the aggregates, for the three-dimensional off-

. ) ) , . lattice reaction-limited cluster—cluster aggregation
-1 : * 4 ' P ' 8 10 model. Each point corresponds fo an average over
1000 independent simulations. The straight line

11’!(N) corresponds to (27).

10

Figure 2. Logarithm of the scaled distance distri-
L L bution function versus the reduced distances. The
-10 0 crosses are the data for N = 4096, 2048, 1024, 512

and 256 units. The scaling (9) is clear. The curve
is a best fit (28).
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the form (23):
frolx) ~ ™72 (28)

with the parameters & = Oand ¢ = % Note that this function exactly satisfies constraint {1 1).
‘We see here that the values of these coefficients are model-dependent, since the random-
walk model described above has probably the same value of fractal dimension, but very
different values of parameters b and c.

3.3. The Brownian ccaA model

This model [11, 12] for rapid aggregation of colloids leads to a fractal dimension of about
1.74 for a number of monomers smaller than 10°. The relation (13) in this case is written

as
174
No46 (%) (29)

as can be seen in figure 3. The conjectured form of the cut-off function can be checked
by plotting r*~2P(r) versus r® for various values of the exponent s. This is done on
figure 4 for s = 1, 1.74 and 2. The best linear behaviour is found for s = D in agreement
with the form (23). The farge-distance cut-off function of the distance distribution can be
approximated well by a law of the form

ety

Fol) ™~ 130532

This fit #s compared in figure 5 with the numerical curves for N = 256-4096. If one
trusts this cut-off, it verifies (23) with the parameters b= 1 and ¢ = % The coefficient 0.3
is given by the constraint (11)., The uncertainty on the value of b is quite important and
here its magnitude should be considered as purely indicative.

(30)

3.4, The ballistic CcA model

This is one model for coagulation of aerosols in a rarefied medium. The diffusion of the
clusters is modelled by random straight lines in space [13]. The relation between the size

In(R,)
4
-0.832-+0.578 In(N)
3-
2-
14
0-
/ Br.C.CA.

_l " 1 L 1 L ] i X .

o " 8 10 Figure 3. The same as figure 1, for the three

4 6 dimensional off-lattice Brownian cluster—cluster
In(N) aggregation model,
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ln(Ri (t/R ) "2 ber))

10
0..
s=2
'b}-v‘ :
& s=1.74
\ Figure 4. Logarithm of the scaled distance
distribution versus the sth power of the reduced

-10 0 ;0 2;3 . 3¢ distances. The plot is linear near the value 5 = D
/R )s (here D ~ 1.74), which is the result given by the
(r .3 argument leading to (22).

In(R? (/R ) Y2 by

10
Br.C.C.A.
e
0-
705 x" In(1+0.3 x)
'100 I é _n; ‘ ; ‘ ; . ¢  Figure 5. The same as figure 2, for the three-

dimensional off-lattice Brownian cluster—cluster
r/R .
g aggregation model.

and the radius of gyration is

1.90
N~39 (&) GBh
2a

for cluster sizes smaller than 10*. This is shown in figure 6. The cut-off function has been
studied in the same way as for the reaction-limited and the Brownian ¢CA model. It can be
seen in figure 7 and is approximated well by

=02

14+0.03x2°

The parameters of this law are then found fobe b =2 and ¢ = % We can note that all the
cCA models studied in the present paper lead to the same value of the parameter ¢, which

feolx} ~ (32)
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In(R,)
4

-0.720 + 0.526 In(N)
3 -

Ba.CCA,
-1 : ot EE— Figure 6. The same as figure 1, for the three-
0 2 4 6 8 10 dimensional off-lattice ballistic cluster—clustes ag-
In(N) gregation model,

In(R%, (/R )" P(r))

10
0-
-100 —L é : ; —t s Figure 7. The same as figure 2, for the three-
1 /R 4 dimensional off-lattice hallistic cluster—cluster ag-
g gregation model,

is known with rather good precision (of order 0.03, here) since this is the leading term of
Jeo- The reason for such a coincidence is unknown.

3.5. The compact and linear models

If one fills up the interior of a sphere of radius R with small units of radius @ according to
the face-centred cubic or the hexagonal close-packed rule, one has

20% [10 [/ R\’
v=(57) () &
since the radius of gyration of such a sphere is equal to ,/3/5R. The Fourier transform

of the distance distribution function is approximately equal to the square of the form-factor
(4) for one homogeneous ball: s2(k). Then taking the inverse Fourier transform of this
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quantity leads to the exact distibution
3r 1
l—>—+—— 34
gnm( 4R 16R3) 34
for r < 2R. Of course this function, which counts the distances between units inside one

given cluster, must vanish exactly in the case where this distance is larger than 2R. The
above function is in the approximate form (9) with D = 3 and a cut-off function

3.3 33 4
1-—%=x+—=x 5
Frolx) = 4/5  80v5 (35)

0 when x > 2./2

P(r)y=

which is no longer under the form (23) expected for CCA fractal objects. It shows some
similarities with the linear model, where particles are placed linearly, one close to the other.
In this case, the radius of gyration is such that

Rg\> N?—1
(%) Y (36)
and so (13) holds with D = 1 and A’ = +/12. The cut-off function is just equal to
X
- — when x < /12
Feolx) = V12 37
0 when x> +/12.

The latter two examples show, in complement, that the distance distribution cut-off
function is not of a universal form in general, even if such a form can exist for some classes
of models (e.g. CCA). It is then quite important to study the influence of these non-scaling
large-distance behaviours to decide if they change the information which can be extracted
from the experimental results. We know that these functions are completely avoided in
many cases, and approximated by a simple but probably non-standard form in other cases.
Hence, we will continue this work by discussing the influence of the cut-off functions on
some physical quantities directly related to light scattering by these fractal objects.

4. Scattering coefficients

We are now interested in physical quantities involving long-range interactions between the
units of a same aggregate. A typical example is radiation-scattering experiments.

4.1. The mean-field dipolar approximation

We suppose that light of wavelength A is scattered by one fractal cluster of & homogeneous
spherical vnits of radius a, much smaller than A, In this case the electromagnetic field inside
each unit is uniform, and can be described by dipolar theory [14]: each particle behaves
tike a small dipole, and the magnitude of its moment is such that

E
p= 4rreo%pﬁ (38)

where the vector Ey,, denotes the local electric fleld, & is the magnitude of the wavevector
(= 2m /L), and p is a function of the p-wave phase shift:

-1
n24+2’

p= -il—(em -1) with 5 = &(ka)® (39)

i
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Its modulus is smaller than |, The parameter n is the complex refractive index of the units.
Each dipole radiates in space an electric field given by

K et i 1 3i 3
E=——Ip|ll+——- |- 14 — — —r
o [p ( e k2r2) ulup )( = kzrz)} “0)
with % being the unit vector in the direction of the distance vector 7.
In a multiple-scattering approach to this problem, each unit reacts to the incident field
(say: Eiqe = Eoe®~), and to all the other dipolar fields emitted by the other units. One

finds then the self-consistent equations [15] for the local fields B; defined at the centre of
the small jth particle:

i i 1 3i 3\ ek
E = E. eikacrt 1 2 ]:E(i _1__,__)_ g B 14+ — — — | —
i o€ zPuZ# i1+ i kzrﬁ wi(urED| 1+ e kzrf, e

41

where we have introduced the relative distance ry = r; — 7.
Following Berry and Percival [8], we now introduce the vectorial coefficients d;, similar
to electric fields, by

Ej = dj eik'mrj . (42)

These coefficients are the solutions of an equation very similar to (41). Lastly, we make
the mean-field approxiration of the d;-distribution:

di=d. (43)
That is to say: all the units of a same cluster have identical dipolar moments. Because

of the linearity of (41), d must be colinear to the incident field E,. Defining the scalar
quantity d by d = dE,, equation (41) leads to

1 3p i 1 3 3\ eltre—Fucrs)
-=1-= T+ —— — | — By {1+ - — - ] :
d 2 ;%[:( * krj! kzl‘ﬁ) ( A 0) ( k!‘jg kzrﬁ) kr_,«;

(44)

This sum, involving only relative distances between monomers of the same cluster, is
different over alf the units from one given unit (labelled j). When averaging over j, then
over a set of independent clusters of same size N, one gets the more tractable formula

1 * Usin(kr) i 2 3 3
g = 16wtV ”fo [T(”m s F*F)
cos{kr) 3 3 e,
+ k2r2 (1+F kzrz):l o Prydr (45)

where P(r} is the distance distribution function, as defined in the first section. The foregoing
integral is always convergent for D > 1, since P(r) = 0 when r > 2a(¥ — 1), and the
expression in the brackets tends to a constant (= %) when kr is close to 0.

Once the mean-field value of the dipolar moments are known, all the optical quantities
(like the scattering (o), extinction (o,) and absorption (o,) cross sections, the asymmetry
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parameter (g}, ...) can readily be calcuiated [16]:
4
g, = T Im{f (Kinc, Kioc) Eo)

o= f | F i B 242

(46)
Oy = 0, — O
1
g = {cosf) = "‘“"“f {F (Kinc, ksca)lz(kincksca) deg
k2o,
with the dipolar field-vector f given by
3pd ;
FBsne,s Bsea) = %(ksca X Ey) X Kgea JZ Gl 47
More precisely, this leads to the explicit formulae
1
X = kR, 7 = 17 LX) +ik(X))
6N 6w N
o= T-Imlpd) oy =2 lpd (1 + B(X) (48)
__bw
8= T
where the geometric functions /,, /> and /3 are given by the following integrals:
6 (N - 1) f°°|:sin(2Xu)( 5 3 )
hixy= - —_
1(%) A o L 2(Xuw)? et (Xu)*
cos(@Xu) (3 D1
+ (1~ g o fetcr @)
6N —1) f°° (cos(Xu) — sin(Xu)/Xu)*
b0 = G2 [ Fuy®
sin{Xu) _sin(Xu) sin?(Xu)] p_
Xy (cos(Xu) X7 ) Xyt :|u Jeolu) du 50)
_6r(N-1) f""[(cos(Xu) - sin(Xu)/Xu)z( 6 45
O==21 (Xuy ' t
sin(Xu) sin(Xu) 15 sin®(Xu)
2 Xy (m(x”) Xa )(l m)z) Xy ]
xuP! foolu) du (51)

which are none other than Fourier transforms of some complicated functions. Let us now
discuss in detail the dependence of these integrals on parameter X, and on cut-off function
Jeo. To simplify the following results, we shall use the values of the scattering coefficients
for one unit, namely:

6 6 6
o) =Imlpl o ="Zlof o) = 25(mie) - |pf). 52)
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4.2. Small-X behaviour

To study the small-X features of these optical quantities, or even for numerical computation,
it is often more convenient to rewrite the integrals (49)-(51) in terms of the following regular
series:

_er(N=D &, LU DEHER 8 1T) 50 0,
H(X)y = ——— g(—” @ +35)! A
x fo WP () dg (53)
BTN & AADUEDE L3I+
LX) = ——— Zo( b @ +6)! 2
[2.#]
X f WPl £ () du (54)
Q0
6N —1) S [+ 3RS+ D +50+10) 4.0 )
X)=—— 2% (-1 2
BOO = =2 (D @ +38)! .
X fo qu“‘-l Foo(t) du (55)

which simply require knowledge of the values of the f-moments. Moreover, the numerical
calculation of the intermediate guantities J;, I and J; are ofter much easier using the above
series rather than the definitions (49)-(51).

We can remark, in particular, that the ieading term of [y (X} depends on the form of
the cut-off function, and that this is recovered in the optical cross sections (but not for g,
which depends only on Iy and f3)

lof? N - 1)
kR

o.(N) ~ Ncr.,(l)(l 4+ (N — 1}m) (I + 2Re{pla

gy (N} = N2a3(1)(1 + 2Re{p}aN — 1)
kRg

(56)

o, (N) =~ Nan(l)(l + 2Re{p}cxN _ 1)

kR,
4 1 2
e=3z(1-5) (k&)

with the numerical parameter c—which depends on the cut-off—given by
. 11 fg~ 0P feolu) du
T 10 [ uP- fro(u) du
This small-X behaviour holds in the limit By « A, which is a very commeon case.

(57)

4.3. Large-X behaviour

When we do not take into account the cut-off function f,(u) (i.e. when it is made equal
to 1), the integrals (50) and (51) are divergent. However, since the main part of the value of
these integrals is due to the values of the integrand between O and a value of u of order 1,
one can easily find the following asymptotics:

N
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where J; is finite for all vajues of the fractal dimension between 1 and 3. Moreover, the
value of AJ; is exactly equal to 372/2 when D = 2.

IfD <2
N
L(X)~ JZE_E
with
6 (| (cosu—sinufu)? _sinu , sin® (1)
h:_fi— A [3 = +2 e cosu — sinu/u +_uz_
IfFD=2
L3 In(X)
LX) ~ , N X7
If D> 2:
37 N
Ny ——v——.
b= p i
If D <2:
N
I3(X) = J3'}—{3
with

6m [ [ (cosu — sinuju)? 6 45
Jy=— 1-=
0

A

IfD=2:

D=2

)

u?  ut

_zsinu cosi — sinu 1 15 +ssin2(u) WP
i3 u 2 ut

3z In(X)
Iz(X):—E—N }((2 .

37 N

LX) = --—-—(D A R

:l uwPldy.

(39)

(60)

An important feature must be remarked here: we see a different behaviour for the fractal
dimension D smaller or larger than 2. This has been noted by Berry and Percival [8] with
the exponential cut-off, but, as expected, it is quite general. More precisely, one finds when
a K A K R, three behaviours depending on the value of D. If 1 < D < 2,

A"l
(2ka)®
Al

(2ka)®?

0e(N) = Nae(1)

os(N) = Nos(1)
0u(N) = Noo(1)

J3 (2ka)®
gx—{1- .
5 Ay

(61

(62)
(63)
(64)
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If D = 2, the foilowing formuiae hold:

3z A' In(4k%a®N /A"

ge(N) = e(l) al (65)
3 A’l 4k%alN A

(M) = No() it k2a2/ ) (66)

ou(N) = No'u(l) (67)
8Ak%a?

s= - w In(4k2a2N/A’) (68)

and, lastly, if D > 2, one has

3n.AI2fD NLI=2/B
4(D—-2)A k2a?
3T AD N1-2D
~ Negl(l
o3 (N) = Noy( )4(0 A a (70
ga(N) = Naoy(1) 7D
A(D - 2)Aka®
3T ArZ/DNI-Z/D )

Te(N) = Noe(1) (69)

g~1- (72)
Note the very simple behaviour of the absorption cross section, which is simply, at first
approximation, the sum of the absorption cross sections of the N individual units, even for
multiple scatteringf.

Having given the general small-X and large-X behaviours, we shall now take two
examples among the possible cut-off functions, and study the magnitudes of the optical
cross sections in the whole range of values of X, Let us take the reaction-limited CCA
model (D = 2) successively with the following trial cut-offs:

Exercise 1:  foo(x) = e~/ (73)
Exercise 2:  feo(x) = e~ V3, (74)

The first example is just the solution (28) found nunerically for this model. It should
yield the correct answer. The second one is a simple exponential function which also
satisfies the constraint (11).

4.4, The correct cut-off (exercise 1)

In this case the normalization cgefficient A is equal to 4, by definition (10), the coefficient
A’ is 3.3 by (27), and the moments of the cut-off function are given by:

fo uP* fo(u)du = 2“+”/21"(“2“3) (75)

 This result for the absorption cross section, and the behaviour of o in the case of the exponentiat cut-off with
the choice A' = (24/2)”, has been given previously by Berry and Percival [8],
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With these simple results, the expressions (53)~(55) can be written simply as
3 AN-1& 42 + 81+ 11 (—2xH!
hixXy==./= 76
‘()2J;x gamnw+m%w)z! (76)

S P434+4 0
BX) =30 -0 T BT )

— 2 e CEDE+TIH16) (+ 1)
B0 = 24N = DX ,;, C+ D+ DU +5) @+ 4

which are uniformly convergent series for all values of the parameter X.

(—8Xx% (77)

(—8x% (78)

4.5. The exponential cut-off (exercise 2)

When replacing the function (74) in the integrals {49)-(51), and knowing A = 4% /3 and
A’ =13.3, one finds the rather simple formulas

NS, 3 L 9\ LK) 3 (9
no0 =225 (14 5 )™ (55) - 230 o) @)
9N - 3 9 4x? 3
LX) = 3 %X ((1+2X2+W)| (1-{-—3-—)—(1-{-57{3)) (80)
9N -1 3 3 9 4x? 7 3 9
E(X) = 3 %2 ((1 + 2X2)(1 + = X7 +§JF) 1[1(1 + T) - (g"i’ X_'2.+m))
(81}

4.6. Comparing these different cut-offs

The smali-X behaviours in the two preceding cases show that the leading terms of I /(N —1)
are slightly different in the two cases under consideration—1.378/ X for the first cut-off (73),
and 1.905/X for (74)—but their orders of magnitude are comparable. For I and 15, the
leading terms are similar. Hence, we do not expect strong differences in the optical guantities
when the wavelength is much larger than the radius of gyration of the aggregate. However,
in principle, the above derivations should be valid, in this mean-field dipolar approximation,
for ka <« 1, which is a much weaker condition. With # = 1.5 and A/a == 25 chosen
as a standard and quite ordinary set of parameters, the reduced scattering cross sections
(os(N)/(ra®)) are plotted in figure 8 for these two cut-off functions, as a function of the
size, and the asymmetry parameter g in figure 9 as a function of the logarithm of the size
of the clusters. Since n is real, the absorption cross section o, must vanish, and so the
extinction and scattering cross sections must coincide, as we can easily verify in the above
formulae (since |p|? = Im{p}, in this case).

Since, k Ry ~ 0.2767+/N, the small-X behaviour coincides here with the range N < 13,
and effectively, the two sets of values are very similar in this case. Moreover, they are
well represented by the small-X formulae (56). However, for this numerical example, we
see that the results for the two cut-off functions are rather different as soon as the size N
is no longer small. Let us look more closely at the N = 128 resuits, for example. The
correct cut-off leads to a scattering cross section equal to 0.6314, while the exponential
cut-off gives a value some 50% larger (o5 = 1.0488). The large-X behaviour is beyond the
plotted range of X. Notice, however, that the formulae (65) yield a ratio between the two
scattering sections approaching the value 3 when X becomes infinite.
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o, jxa’

4
In(N)

Figure §. Plot of the reduced scattering cross section  Figure 9, Plot of the asymmetry parameter versus the
versus the size of the aggrepates, in the mean-field logarithm of the size of the aggregates. Same optical
dipolar theory of the multiple light-scattering, The parameters and same notations as for figure 8.
parameters are 1 = 1.5, A = 252, and the model is the

reaction-limited cluster—cluster aggregation. Full circles

are the results for the correct cut-off function shown

in figure 2. Triangles are the data for the exponential

cut-off function (74). The full corve is the small-X

behaviour, as approximated by (56).

The same sort of remarks can be made for the asymmetry parameter. The values are
0.5964 and 0.4449, respectively, for ¥ = 128, i.e. a relative difference of some 30%.
When one knows the importance of the influence of the magnitude of these quantities on
some optical properties (¢.g. the albedo of planetary atmospheres), one concludes that it is
quite important to be careful about cut-off functions in order to obtain reasonable values
for optical observables. In particular, chapter 3 provides a list of correct approximations
of the large-scale cut-off functions for the Brownian, ballistic and chemical cluster—cluster
aggregation models, to be used in the calculation of some optical quantities.

5. Conclusion

If one is only interested in the angular distribution of the intensity of the light scattered
by such fluffy aggregates, one has simply to determine the range in the moment transfer
(g = 4n sin(6/2)/)) which corresponds to the scaling.

In this case, it is not important to take the cut-off functions into account, since one
only deals only with the self-similar part of the aggregate. On the contrary, many physical
applications need precise values of the optical cross sections, and not just some scaling
behaviours. These quantities are directly related to some average of the scattered or absorbed
intensity, this average being performed over the scaling but also the non-scaling range of
the parameters. Let us take the scattering cross section, for example. It is the average of
the scattered intensity of the light over all the angles #. In a wide range of values of &, the
system looks like a perfect self-similar structure, since the inverse of ¢ is much larger than
@ and much smaller than R;. However, if the scattering angle is too small, the system is
no longer in the self-similar regime. Nevertheless this still has to be counted in the average
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for the calculation of this cross section. The present work has been devoted to answering
the question of whether this non-scaling part is important or not.

We then investigated the influence of these cut-offs between the scaling and the non-
scaling regimes in the mean-field dipolar approximation for scattering. The conclusion is
that, generally, the optical cross sections depend quantitively or the cut-off functions. This
effect is particularly important when the wavelength A is smaller than, or of the same order
of magnitude of, R, (i.e. large values of X). In this case, the presence of the factor A in
{59), (65) and (69) can completely change the order of magnitude of the optical quantities.
However, even in less extreme cases, for example if the size parameter X is not very large,
the effect of the cut-off is still evident (see the discussion of the point ¥ = 128 of figures 8
and 9, which corresponds to X = 3.1). In this case, the form of the cut-off in the distance
distribution functions plays a role, and a correct form must be taken in the calculations to
get correct numerical values of the cross sections. Another general feature found here is
that the larger the size of the aggregate, the more important is the sensitivity to the cut-offs,
This dependence can be qualitatively explained using the following argument: the optical
cross sections are derived here as Fourier transforms of some functions of the distance, but
if the distances are allowed to go to infinity, these integrals diverge. It is then not surprising
that the cut-offs in the distances have a great influence on the numerical value of these
Pourier transforms, and hence on the optical quantities. The effect is more important for
large clusters because the distances to be taken into account are large, and the divergence
of the integrals takes place for infinite distances.

In this paper, we also give explicitly the analytical expressions for the scattering,
extinction, absorption cross sections, as well as the asymmetry parameter, in terms of
the cut-off function. These cut-off functions have been computed for the most common
cluster—cluster aggregation models, which are important in the physics of aerosols, colloids
and polymers, and they have never been found equal to a simple exponential cut, as had been
proposed previcusly. We can now use the formulae (28), (30), (32}, (48), and (53)-(55) as
recipes to compute reasonable values of the optical cross sections of fractal aggregates in a
number of cases.
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